SYNTHESIS OF TWO STRUCTURAL ANALOGUES OF THE SMALLEST ANTIBIOTICALLY ACTIVE DEGRADATION PRODUCT OF MORNOMYCIN A

Heidemarie Hohgardt, Wolfgang Dietrich, Harald Kühne, Dietrich Müller, Detlef Grzelak, and Peter Welzel

> Fakultät für Chemie der Ruhr-Universität, Postfach 102148, D-4630 Bochum (FRG)

> > (Received in Germany 31 May 1988)

<u>Abstract</u> - The disaccharide analogues **19** and **2** of moenomycin A have been synthesized. In contrast to the moenomycin A degradation product **1**, synthetic compounds **19** and **2** do not show antibiotic activity.

Introduction

Moenomycin A and related antibiotics interfere with the biosynthesis of peptidoglycan, the main structural component of the bacterial cell wall. With cell-free systems from Escherichia coli it was demonstrated that moenomycin A inhibits the formation of the linear glycan strands of peptidoglycan from the last membrane precursor by its inhibitory effect on the enzyme <u>penicillin-binding protein 1b</u> (PBP 1b).¹ From degradation and biochemical work it is known that compound 1 represents the smallest fully active portion of moenomycin A. Removal of unit E or the carbamoyl grouping from 1 as well as esterification of the carboxyl group of unit H destroy the antibiotic activity completely.²

Scheme 1.

There is a need in biologically active derivatives of 1 that can be used

- for localizing the transglycosylase domain in PBP 1b (a bifunctional protein that catalyses the two successive final reactions in the biosynthesis of cross-linked peptidoglycan¹) by irreversible binding
- as ligands in affinity chromatographic purification of the enzyme PBP 1b.

Furthermore, derivatives of 1 with better transport properties in living organisms would be highly welcome. It may be recalled that moenomycin A and related antibiotics a) belong to the most active antibiotics, b) inhibit a step which is not affected by any other antibiotic, c) cause little resistance, and d) nevertheless cannot be used in human therapy because of their unsuitable physical properties.³ Until now we have been unable to find efficient methods to further derivatize $1.^4$ We therefore resorted to synthetic methods to arrive at structural analogues of 1.

Synthetic planning

A retrosynthetic analysis of 1 revealed the ordinary precursors D-glucosamine (E) and 3-phospho-D-glycerate (G-H), accompanied by unusual ones such as the D-moenuronic acid moiety (F) and the perhydromoenocinol part (I'). In approaching the problems associated with the synthesis of type 1

compounds experimentally it was realized that the synthesis of both D-moenuronic acid buildung blocks⁵ and 2-O-alkylated glyceric acid derivatives⁶ is a rather complicated task. In view of this situation we decided to start our efforts towards moenomycin A analogues by

a) using as a starting material the H-I' fragment 16, obtained from moenomycin A by degradation, 7 and

b) replacing the D-moenuronic acid part (F) by a common carbohydrate moiety. The latter decision led to the further question, which structural changes in <u>unit F</u> are tolerated without loss of the antibiotic activity.

In the present publication we report the synthesis of compound 2 in which unit F is derived from Dgalacturonic acid. 2 differs from 1 only in unit F by the configuration at C-4 and the missing 4-Cmethyl group.

Formation of the <u>phosphoric acid diester</u> grouping at the anomeric carbon of unit F was anticipated to cause the main synthetic difficulties.^{8,9} There are only scarce examples in the literature,¹⁰ using

- the reaction of orthoesters with phosphoric acid monoesters (this method is inapplicable in the present case for structural reasons)¹¹
- activation of a saccharide-1-phosphate and subsequent reaction with an appropriate alcohol (this corresponds to the diester methodology in nucleotide synthesis)¹²
- the Ramirez cyclic enediol phosphate method¹³
- Schmidt's trichloroacetimidate procedure¹⁴
- the so-called phosphite methodology^{8,15}
- 1-H-phosphonate intermediates.¹⁶

(Y = protecting group)

Scheme 2.

We decided to use the phosphite-triester approach as summarized in Scheme 2. It is known that dichlorophosphites of type A (X=Cl) are more reactive than the monochlorophosphites B (X=Cl), especially when a bulky protecting group Y is employed.¹⁷ This reactivity difference can be utilized to introduce sequentially and selectively first OR and then OR'. According to Ugi¹⁸ the selectivity is even more pronounced when in A and B Cl is replaced by 1,2,4-triazol-1-yl residues.

As protecting group Y (see Scheme 2) the bulky 2,2,2-trichloro-1,1-dimethyl-ethyl residue was chosen for the reason mentioned above. Furthermore, phosphite- and phosphate-triesters with this protecting group can be expected to be quite stable as a consequence of steric hindrance.^{17,18}

For the oxidation of aldose-1-phosphite-triester to phosphate-triester intermediates $(C \rightarrow E)$ until now tert-butyl hydroperoxide and O_2 /AIBN have been employed.^{9,15} We selected bis(trimethylsilyl)peroxide which should be a superior reagent for this purpose.¹⁹ Finally, a number of methods is available for the reductive removal of 2,2,2-trichloroethyl-type protecting groups (step $E \rightarrow D$ in Scheme 2).²⁰

Synthesis of the galacturonic acid derivative 6.

In a straightforward route to 6, which contains two different protecting groups in the 1- and the 6-position, D-galacturonic acid was treated with anhydrous allyl alcohol in the presence of Dowex-50 (H^+ form) resin²¹ to furnish a 1:1 mixture of 4a/4b and 5a/5b. The furanoid fraction was recycled (2x) to give eventually a 56 % yield of a 1:3.5 mixture of 4a and 4b. The structural assignments are based on very careful NMR analyses of 4a, 4b, 5a, and 5b, and their respective acetyl derivatives 4c, 4d, 5c, and 5d (see Tables 1-3). Routinely, 4a and 4b were not separated. Transesterification of this mixture with sodium methoxide in methanol yielded a mixture of 6 and its β -isomer, the separation of which was easier than that of 4a and 4b. This method for the synthesis of compounds of type 6 compares well with that recently reported by Ogawa for similar galacturonic acid derivatives.²²

Scheme 3.

Synthesis of disaccharides 11a and 12a²³

If 6 without further protecting group chemistry was directly treated with the oxazoline 8^{24} in toluene-nitromethane solution in the presence of anhydrous p-toluenesulfonic acid,²⁵ the two isomeric disaccharides 10 and 11a were obtained in a 1:1 ratio (33 % and 36 % yield). Under the conditions of the Helferich modification of the Koenigs-Knorr method²³ - reaction of 6 with 2-acetamido-3,4,6-tri-0-acetyl-2-deoxy- α -D-glucopyranosyl bromide (9)²⁶ in CH₂Cl₂ solution in the presence of Hg(CN)₂-HgBr₂²⁷ - 53 % of the undesired 1-3-linked disaccharide 10 were obtained whereas 11a was formed in moderate 35 % yield.²⁸ In order to suppress the formation of the 1-3-linked disaccharide, 6 was converted into the isopropylidene derivative 7.²⁷ Coupling of 7 with 8 in CH₂Cl₂ solution at 60°C in the presence of 4 Å molecular sieves with anhydrous camphorsulfonic acid as catalyst provided disaccharide 12a in 70 % yield. The acetonide protecting group was then removed by treatment with 20% aq. acetic acid²⁷ to give the desired 11a in 99 % yield.

The structures of 10 and 11a were assigned on the basis of extensive NMR experiments (see Experimental), the results of which are collected in Table 4. Most specifically, the low-field position of the C-2 signal of the galacturonic acid molety in 11a (δ = 78.69 as compared to δ = 69.84 in 6) has its origin in the glycosidic linkage at this position (B-effect). Attachment of the glucosamine residue to the 2-position of the uronic acid part in 11a was confirmed by a H,C-COLOC experiment (¹H, ¹³C correlation spectroscopy via long range couplings²⁹) which showed a coupling from the uronic acid C-2 across the glycosidic bridge to 1-H of the amino sugar molety (alongside with cross peaks from C-2 to 2-H, 3-H and 4-H and from C-3 to 1-H, 3-H, and 4-H of the uronic acid part).

Synthesis of 11d

In the next phase of the synthesis the following reactions had to be accomplished: a) introduction of the 3-O-carbamoyl group into 11a, b) acetylation of the free 4-OH group, and c) removal of the allyl group. We wanted to protect the 4-OH group in order to prevent unwanted side-reactions associated with the deallylation (furancid ring formation) and phosphorylation steps.

The urethane grouping was introduced 6b,30 by reacting 11a with trichloroacetyl isocyanate³¹ (1 equiv, in order to suppress the attack of the very reactive isocyanate at the 4-OH group³²) at -40°C. According to TLC analysis 11b was the sole reaction product. Acylation in the 3-position was clearly visible in the ¹H NMR spectrum of 11b (1 ppm down-field shift³³ of the 3-H signal as compared with 11a). In the IR spectrum the CO band appeared at 1795 cm⁻¹.

11b turned out to be rather sensitive and decomposed partly (by loss of the trichloroacetyl group³⁴) on attempted chromatographic purification.³⁵ Normally, 11b was, therefore, directly converted into its acetyl derivative with acetic anhydride-pyridine, using Steglich's DMAP³⁶ as catalyst. Under the conditions of the work-up procedure and the chromatographic separation the trichloroacetyl group was lost and 11c was obtained in 58 % yield alongside with the elimination

product 13 (25 %). The chemical processes leading to 13 were not investigated. It seems reasonable to assume that migration of the trichloroacetylcarbamoyl group from the 3- to the 4-position under the acetylation conditions followed by elimination³⁷ and acetylation of the 3-OH group are responsible for this side reaction.

Finally, the allyl ether in 11c was cleaved³⁸ with PdCl₂ in a 0.1 molar solution of NaOAc in 20:1 acetic acid-water³⁹ to provide 11d (anomeric mixture) in 81 % yield. Similarly, from 12a the allyl group was removed to give 12b as a mixture of anomers (83 %).

Scheme 5.

Synthesis of model compounds 14b and 14d

In exploratory experiments the dichlorophosphite 15 (X = Cl) was converted into the ditriazolide 15 (X = 1, 2, 4-triazol-1-yl).¹⁸ This reagent in THF-pyridine solution was sequentially treated with the disaccharide 12b and neopentyl alcohol to give the corresponding triphosphite. For the subsequent oxidation with bis(trimethylsilyl)peroxide 19 (to give 14a) a solvent change (THF-pyridine+CH₂Cl₂) had to be performed which was accompanied by some hydrolytic cleavage of the triphosphite to give 12b back. 14a was also sensitive towards hydrolysis and during chromatographic purification extensive decomposition (formation of 12b) occurred, even in the presence of triethylamine. In the ¹H NMR spectrum of 12a J_{1,2} = 3.2 Hz was indicative of the α -configuration at C-1 in the uronic

acid part. The phosphate protecting group of 14a was reductively removed with Zn-Cu couple 40 to give 14b in quantitative yield.

To circumvent the unwanted hydrolysis associated with the change of solvent necessary for $(Me_3SiO)_2$ oxidation, in a second model experiment the phosphorylation reaction was performed in CH_2Cl_2 solution. Thus, reaction of 15 (X = 1,2,4-triazol-1-yl) with 12b and then with 16 in CH_2Cl_2 solution followed by oxidation with bis(trimethylsilyl)peroxide provided 14c in 20 % overall yield alongside with 12 % of a compound presumed to be the ß-anomer.³⁴ According to ¹H NMR spectroscopy 14c was a mixture of two diastereoisomers (isomeric at the phosphate chiral center). Reductive elimination of the 2,2,2-trichloro-1,1-dimethylethyl group proceeded again uneventfully to give diphosphate 14d in quantitative yield. Here again, the α -configuration at C-1 of unit F was evident from the ¹H NMR spectrum (J_{1,2} = 3.3 Hz).

Synthesis of 2 from 11d

The most advantageous experimental conditions found in the model series were used. Reaction of 15 (X = 1,2,4-triazol-1-yl) with disaccharide 11a and the moenomycin degradation product 16 in CH_2Cl_2 solution followed by $(Me_3SiO)_2$ oxidation and subsequent Zn-Cu-induced reductive elimination of the phosphate protecting group⁴⁰ gave 18 (21 %) and a fraction containing (on the basis of an incomplete spectral analysis) the β -phosphate; ³⁴ 36 % of 11a were recovered. The structure of 18 is well-supported by spectral data, such as the 1-H signal of unit F at $\delta = 6.53$ (dd, $J_{1,2} = 3.5$ Hz and $J_{1,P} = 7.0$ Hz), and the ¹³C NMR signals at $\delta = 95.88$ (C-1 of unit F) and $\delta = 157.12$ (signal of the carbamoyl carbon). The ester protecting groups were finally removed by hydrolysis with LiOH in THF-water.⁴¹ TLC indicated that first 19 was formed which on longer exposure to the basic conditions was converted to 2. In view of the interesting relation between chemical structure and biological activity of these compounds both 19 and 2 were isolated. Their structures are fully supported by the spectroscopic properties (¹³C NMR and FAB-MS, see Table 6 and Experimental).

Biological properties of 19 and 2 and conclusions

In van Heijenoort's <u>in vitro</u> assay for inhibition of the transglycosylation reaction^{1,2} 19 and 2 turned out to have no inhibitory effect at a final concentration of 10 μ g/ml. In conclusion, we have developed a synthetic scheme for disaccharide analogues of moenomycin A. Compounds 19 and 2 which differ from the moenomycin A degradation product 1 only at C-4 of unit F are in contrast to 1 biologically inactive which means that the structural requirements in unit F for antibiotic activity are very strict.

EXPERIMENTAL

<u>General</u>

All reactions were performed in oven-dried glassware under a positive pressure of argon. Liquids and solutions were transferred by syringes, and were introduced into reaction flasks through rubber septa. All solvents were carefully dried prior to use. Usual work-up means partitioning the reaction mixture between water and an organic solvent (given in parenthesis), drying the combined organic solutions over Na_2SO_4 and removal of solvent either by distillation in vacuo using a rotatory evaporator or by lyophilization.

The instrumentation used was: ¹H NMR: WP 80 (Bruker); AM 400 (Bruker); ¹³C NMR: AM 400 (Bruker); IR: Perkin Elmer 257 and 1310; Liquid SIMS: a) MAT 731/SS 200 instrument (Varian) with a modified Saddle Field Ion Source (Ion Tech Ltd.); b) MAT-CH-5 instrument (Varian) with a modified thermal ion emitter and a Cs ion gun, MPLC: Medium pressure chromatography using 20.0 cm x 1.5 cm glass tubes (column A, short, 9 g SiO₂), 37.0 cm x 1.5 cm glass tubes (column A, long, 17 g SiO₂), 31.0 cm x 2.5 cm glass tubes (column B, 60 g SiO₂), or 40.0 cm x 4.5 cm glass tubes (column C, 270 g ${\rm SiO}_{\rm p}),$ silica gel Grace (35-70 $\mu\text{m}),$ and a Duramat pump (CfG).

The following methods were employed for the NMR spectroscopical structural assignments (if necessary): a) normal ¹H and ¹³C NMR spectroscopy (DEPT technique⁴²), b) standard two dimensional (2D) ¹H, ¹H chemical shift correlation spectroscopy (COSY⁴³), heteronuclear ¹H, ¹³C 2D shift correlation using large (¹J_{CH}) C,H couplings, ⁴⁴ and heteronuclear ¹H, ¹³C correlation spectroscopy via long range couplings (COLOC²⁹).

Carbon and proton numbering in the subunits (see NMR and MS spectral data) follows the moenomycin A nomenclature (see formula 1).

Reaction of 3 with allyl alcohol.

a) A mixture of D-galacturonic acid monohydrate (3, 530 mg, 2.50 mmol), Dowex-50 W-X2 resin (H^{+} form, 100-200 mesh, 0.5 g) and anhydrous allyl alcohol (2.0 ml) was stirred for 15 h at 85°C. The resin was filtered off and washed with methanol. The combined filtrates after solvent evaporation and MPLC (column B, hexanes-CHCl₃-ethanol 12:1:1) furnished 5a (137 mg, 20 %, colourless sirup), 5b (42 mg, 7 %, colourless sirup), and a mixture of 4a and 4b (187 mg, 28 %, colourless sirup).

b) A mixture of D-galacturonic acid monohydrate (3, 6.00 g, 28.3 mmol), Dowex-50 W-X2 resin (H⁺ form, 100-200 mesh, 1.8 g) and anhydrous allyl alcohol (60.0 ml) was stirred for 46 h at 80°C. The resin was filtered off and washed with methanol. After solvent evaporation of the combined filtrates 5a/5b were separated from 4a/4b by MPLC (column B, hexanes-CHCl₃-ethanol 12:1:1). Sa/5b were treated again with Dowex-50 W-X2 and allyl alcohol. After three cycles a mixture of 5a/5b (0.30 g, 5 %) and a mixture of 4a/4b (3.45 g, 56 %) were obtained. The 4a/4b fraction formed a brownish sirup, which after boiling in dry ether (15 ml per 2 g) furnished a colourless solid. 200 mg of this sample were separated by MPLC (column B, hexanes-CHCl₃-ethanol 7:1:1) to give pure 4a (40 mg) and 4b (144 mg).

Allyl (allyl B-D-galactopyranosid)uronate (4a).

M.p. 137-139°C (from $CHCl_3$ -hexanes).- ¹H NMR (400 MHz, $CDCl_3$, ¹H, ¹³C correlation): see Table 1.-¹³C NMR (100.6 MHz, $CDCl_3$, DEPT): see Table 2.- IR ($CHCl_3$): 3630-3130 (OH), 1760 cm⁻¹ (CO).-MS (Cs^+ , matrix: DMSO/glycerol): $m/z(\pi) = 549$ (0.7, $[2M+H]^+$), 275 (15, $[M+H]^+$), 217 (100), 199 (14), 181 (12), 171 (12), 159 (6), 145 (14).- (Found: C, 52.54; H, 6.70. $C_{12}H_{18}O_7$ (274.3) requires C, 52.55; H, 6.62).

Allyl (allyl &-D-galactopyranosid)uronate (4b).

M.p. 112-113.5°C (from CHCl₃-hexanes).- ¹H NMR (400 MHz, $CDCl_3$, ¹H, ¹³C correlation): see Table 1.-¹³C NMR (100.6 MHz, $CDCl_3$, DEPT): see Table 2.- IR (CHCl₃): 3640-3130 (OH), 1760 cm⁻¹ (CO).-MS (Cs⁺, matrix: DMSO/glycerol): m/z(%) = 549 (3, [2M+H]⁺), 275 (18, [M+H]⁺), 217 (100), 199 (10), 181 (9), 171 (11), 159 (5), 157 (10).- (Found: C, 52.66; H, 6.65. $C_{12}H_{18}O_7$ (274.3) requires C, 52.55; H, 6.62).

Allyl (allyl B-D-galactofuranosid)uronate (5a).

¹H NMR (400 MHz, $CDCl_3$, ¹H, ¹³C correlation): see Table 1.- ¹³C NMR (100.6 MHz, $CDCl_3$, DEPT): see Table 2.- IR ($CHCl_3$): 3640-3200 (OH), 1750 cm⁻¹ (CO).- MS (Cs^+ , matrix: DMSO/glycerol): $m/z(\%) \approx 275$ (5, $[M+H]^+$), 259 (2), 217 (34), 199 (6), 181 (7), 141 (3).- (Found: C, 52.61; H, 6.71. $C_{12}H_{18}O_7$ (274.3) requires C, 52.55; H, 6.62).

<u>Allyl (allyl α-D-galactofuranosid)uronate (5b).</u>

¹H NMR (400 MHz, CDCl₃, ¹H,¹³C correlation): see Table 1.- ¹³C NMR (100.6 MHz, CDCl₃, DEPT): see

5777

Assignment	<u>4a</u>	4b	5a	<u>5b</u>
<u>unit F</u>				
1-H	4.31 (d)	5.02 (d)	5.02 (s)	4.92 (d)
2-H	3.64-3.77	3.89	4.01 (d)	4.08
3-н		3.89	4.12 (t)	4.40 (t, broad)
4-H	4.27 (dd)	4.27 (dd)	4.44	4.19 (dd)
5-H	4.12 (d)	4.40 (d)		4.29 (dd)
OH			3.31 (s, broad)	3.21 (s, broad)
	3.70-4.25	3.95-4.35	4.10 (s, broad)	3.23 (d, broad)
			4.25 (s, broad)	3.76 (s, broad)
5b : $J_{1,2}^{2,3} = 5$	$J_{2,3}^{3,4} = J_{3,4}^{3,4}$	$J = 7.5 \text{ Hz}, J_{4,5} =$	2.5 Hz, $J_{5,OH} = 9.0$ H	2.
allyl groups	4.10	4.00	2 05	4 05
1-H	4.12	4.02	5.95 4 63-4 91	4.03
	4.00-4.71	4.03-4.07	4.03~4.01	4.00-4.75
1'-H	4.41	4.10	4.1.2	4.43
	4.68-4./1	4.03-4.07	4.03~4.01	4.00-4.70
4a : 1-H.	J. 1 = 13.0 Hz	$^{3}J = 6.5 \text{ Hz}; 1'-H$	3 J = 5.5 Hz.	
4b: 1-H.	$ J_{1} = 13.0 \text{ Hz}$	3 J = 6.0 Hz; 1'-H	3 J = 5.5 Hz.	
5a, 5b: 1-H,	$ J_{AB} = 13.0 \text{ Hz}$	3 J = 6.0 Hz, $ ^{4}$ J	= 1.5 Hz; 1'-H, ³ J =	6.0 Hz, $ ^4 J = 1.5$ Hz

	•								
Table 1.	¹ H NMR	spectral	data	of com	pounds 4a,	4b.	5a.	and	5b

Verlapping multiplets

Assignment	<u>4a</u>	<u>4b</u>	<u>5a</u>	<u>5b</u>
<u>unit F</u>				
C-1	101.66	98.16	107.69	100.02
C-2	70.74*	68.25	79.20	77.94
C-3	72.98*	69.87	77.87*	74.97
C-4	69.81	70.40	86.73	82.64
C-5	73.98	70.51	70.05	69.96
C-6	167.74	168.69	171.59	171.78
allyl group	s ⁴⁸			
C-1	66.13	66.01	66.67	66.23
	70.43	69.02	68.28	69.41

Table 2. ¹³C NMR spectral data of compounds 4a, 4b, 5a, and 5b

Assignments based on literature data. 50

Table 2.- IR $(CHCl_3)$: 3640-3130 (OH), 1740 cm⁻¹ (CO).- MS $(Cs^+, matrix: DMSO/glycerol)$: m/z(%) = 549 (2, $[2M+H]^+$), 491 (22), 275 (14, $[M+H]^+$), 217 (100, $[M+H-AllOH]^+$), 199 (13), 181 (14), 159 (7), 141 (17).- (Found: C, 52.63; H, 6.65. $C_{12}H_{18}O_7$ (274.3) requires C, 52.55; H, 6.62).

Acetylation of 4a, 4b, 5a, and 5b.

5a, 5b, and a mixture of 4a and 4b were individually acetylated using acetic anhydride-pyridine to furnish 5c (99 %), 5d (100 %), and a mixture of 4c and 4d (96 %). The mixture of 4c and 4d was separated by MPLC (hexanes-CHCl₂-ethanol 10:1:1) to give 4c (34 %) and 4d (57 %).

Allyl (allyl 2.3.4-tri-O-acetyl-B-D-galactopyranosid)uronate (4c).

¹H NMR (400 MHz, $CDCl_3$, COSY): see Table 3.- IR ($CHCl_3$): 1745 cm⁻¹ (CO).- MS (Xe, matrix: glycerol): m/z(%) = 393 (18), 362 (5), 344 (13), 343 (100), 326 (6), 303 (29), 301 (9).- (Found: C, 53.94; H, 6.10. $C_{18}H_{24}O_{10}$ (400.4) requires C, 54.00; H, 6.04).

Allyl (allyl 2,3,4-tri-O-acetyl-α-D-galactopyranosid)uronate (4d).

¹H NMR (400 MHz, $CDCl_3$, COSY): see Table 3.- IR $(CHCl_3)$: 1745 cm⁻¹ (CO).- MS (Cs⁺, matrix: DMSO/glycerol): m/z(%) = 401 (3, [M+H]⁺), 343 (73), 243 (13), 241 (6), 223 (26), 199 (7), 181 (100), 153 (32), 137 (28).- (Found: C, 53.86; H, 6.10. $C_{18}H_{24}O_{10}$ (400.4) requires C, 54.00; H, 6.04).

Assignment	<u>4c</u>	4d	_5c	_5d
unit F				
1-H	4.53 (d)	5.25 (d)	5.08 (8)	5.18 (d)
2-H	5,23 (dd)	5.16 (dd)	5.09 (d)	5.04 (dd)
3-H	5.06 (dd)	5.41 (dd)	5.02 (dd)	5.57 (dd)
4-H	5.71 (dd)	5.77 (dd)	4.54 (dd)	4.38 (dd)
5_8	4 29 (d)	4 64 (d)	5 39 (d)	5.26 (d)
COCH	1.97 (c)	1 96 (s)	2 07 (s)	2 15 (8)
3	2,22 (p)	2.04 (=)	2.0, (E)	2.10 (c) 2.19 (c)
	2.23 (5)	2.04 (B)	2.00 (s)	2.15 (5)
	2.20 (8)	2.03 (8)	2.10 (\$)	2.20 (5)
4c: $J_{1,2} = 7.5$ 4d: $J_{1,2} = 3.5$ 5c: $J_{2,3} = 2.0$ 5d: $J_{1,2} = 4.5$	Hz, $J_{2,3} = 10.5$ H Hz, $J_{2,3} = 11.0$ H Hz, $J_{3,4} = 6.0$ Hz Hz, $J_{2,3} = 8.0$ Hz	z, $J_{3,4} = 3.5 \text{ Hz}, 3.6 \text{ Hz}, 3.6 \text{ Hz}, 3.4 = 6.5 \text{ Hz}, J_{4,5} = 3.0 \text{ Hz}, 3.4 = 6.5 \text{ Hz}, J_{4,5}$	$J_{4,5} = 1.5 \text{ Hz}.$ $J_{4,5} = 1.5 \text{ Hz}.$ $J_{4,5} = 3.5 \text{ Hz}.$	
allyl groups 48				
1-H	4.12	4.03	3.95	3.90
	4.55~4.69	4.53-4.68	4.58-4.74	4.58-4.70
1'-H	4.41	4.20	4.19	4.23
	4.55~4.69	4.53-4.68	4.58-4.74	4.58-4.70
4c: 1-H, IJ _{AB} 4d: 1-H, IJ _{AB} 5c: 1-H, IJ _{AB} 5d: 1-H, IJ _{AB}	= 13.5 Hz, ${}^{3}J$ = 6 = 13.0 Hz, ${}^{3}J$ = 6 = 13.0 Hz, ${}^{3}J$ = 6 = 13.0 Hz, ${}^{3}J$ = 6	$\begin{array}{l} 1.5 \text{ Hz}, \ ^4 \text{J} = 1.5 \\ 1.0 \text{ Hz}, \ ^4 \text{J} = 1.2 \\ 1.0 \text{ Hz}, \ ^4 \text{J} = 1.5 \\ 1.0 \text{ Hz}, \ ^4 \text{J} = 1.5 \end{array}$	Hz; 1'-H, ${}^{3}J = 5.0$ Hz; 1'-H, ${}^{3}J = 5.2$ Hz; 1'-H, ${}^{3}J = 6.0$ Hz; 1'-H, ${}^{3}J = 6.0$	0 Hz, $ {}^{4}J = 1.5$ Hz. 2 Hz, $ {}^{4}J = 1.2$ Hz. 0 Hz, $ {}^{4}J = 1.5$ Hz. 0 Hz, $ {}^{4}J = 1.5$ Hz.

Table 3. ¹H NMR spectral data of compounds 4c, 4d, 5c, and 5d

Allyl (allyl 2,3,5-tri-O-acetyl-B-D-galactofuranosid)uronate (5c).

¹H NMR (400 MHz, $CDCl_3$, COSY): see Table 3.- IR $(CHCl_3)$: 1745 cm⁻¹ (CO).- MS (Xe, matrix: glycerol): m/z(%) = 401 (3, $[M+H]^+$), 343 (10), 303 (18), 301 (25), 261 (10), 259 (25), 243 (21), 223 (23), 183 (24), 181 (25), 155 (14), 141 (25), 127 (17), 115 (18).- (Found: C, 54.04; H, 6.09. $C_{18}H_{24}O_{10}$ (400.4) requires C, 54.00; H, 6.04).

Allyl (allyl 2,3,5-tri-0-acetyl-a-D-galactofuranosid)uronate (5d).

¹H NMR (400 MHz, $CDCl_3$, COSY): see Table 3.- IR $(CHCl_3)$: 1745 cm⁻¹ (CO).- MS $(Cs^+, matrix: DMSO/glycerol)$: m/z(%) = 533 (0.1, $[M+Cs]^+$), 459 (0.3), 401 (0.7, $[M+H]^+$), 343 (6), 325 (2), 283 (2), 243 (5), 225 (2), 223 (8), 183 (4), 181 (5).- (Found: C, 53.93; H, 5.97. $C_{18}H_{24}O_{10}$ (400.4) requires C, 54.00; H, 6.04).

Methyl (allyl &-D-galactopyranosid)uronate (6).

To a solution of 4a/4b (140 mg, 511 µmol) in methanol (2.5 ml) a solution of sodium methavide in methanol (2.0 ml, aliquot of 30 mg of sodium in 20 ml of methanol) was added. The solution was left at 20°C for 30 min and was then neutralized with Dowex 50 W-X2 resin (H⁺-Form, 100-200 mesh, 0.5 g). The resin was filtered off and washed with methanol. The combined filtrates after solvent evaporation and MPLC (column A, hexanes-CHCl₃-ethanol 6:1:1) furnished 6 (78 mg, 62 %), along with the corresponding B-configurated product (22 mg, 18 %); ³⁴ 7 mg (5 %) of 4a/4b were recovered.-M.p. 119-121°C (from CHCl₃-hexanes, colourless needles).- ¹H NMR (400 MHz, [D₅] pyridine): see Table 4.- ¹³C NMR (100.6 MHz, [D₅] pyridine, DEPT): see Table 4.- IR (CHCl₃): 3640-3100 (OH), 1760 cm⁻¹ (CO).- MS (Cs⁺, matrix: DMSO/glycerol): m/z(%) = 745 (0.6, [3M+H]⁺), 497 (5, [2M+H]⁺), 249 (22, [M+H]⁺), 191 (100), 173 (21), 155 (17), 145 (9), 131 (18), 119 (20).- (Found: C, 48.48; H, 6.48. C₁₀H₁₆O₇ (248.2) requires C, 48.39; H, 6.50).

Methyl (allyl 3,4-O-isopropylidene-α-D-galactopyranosid)uronate (7).

A mixture of 6 (930 mg, 3.75 mmol) and anhydrous copper(II) sulphate (9.5 g) in acetone (100 ml) was stirred at 20°C for 4 d. The copper(II) sulphate was removed by centrifugation and washed with acetone. The combined solutions after solvent evaporation furnished pure 7 (1.05 g, 97 %, colourless solid).- M.p. 96-97.5°C (from ethanol).- ¹H NMR (80 MHz, $CDCl_3$): $\vec{o} = 1.31$ (s, 3H, CCH_3); 1.46 (s, 3H, CCH_3); 3.79 (s, 3H, CO_2CH_3); 3.83-4.70 (7H, $-CH_2-CH=CH_2$, ring protons, OH); 5.01 (d, 1H, 1-H); 5.08-5.42 (2H, $=CH_2$); 5.65-6.16 (m, 1H, =CH-1).- $J_{1,2} = 3.5$ Hz.- $IR(CHCl_3)$: 3640-3140 (OH). 1760 cm⁻¹ (CO).- MS (Cs⁺, matrix: DMSO/glycerol): m/z(%) = 381 (5, [M+gly+H]⁺), 327 (18), 249 (24), 191 (83), 173 (19), 157 (26), 155 (17), 131 (12), 119 (16), 93 (100, [gly+H]⁺).- (Found: C, 54.21; H, 6.89. C₁₃H₂₀O₇ (288.3) requires C, 54.16; H, 6.99).

Methyl [allyl 2-0-(2-açetamido-3,4,6-tri-0-acetyl-2-deoxy-β-D-glucopyranosyl)-3,4-0-isopropylideneα-D-galactopyranosid]uronate (12a).

To a mixture of 7 (550 mg, 1.91 mmol), molecular sieves (4 Å, 30 mg), and 8 (1.40 g, 4.27 mmol) in CH_2CI_2 (8.0 ml) a solution of anhydrous camphorsulfonic acid (0.58 g, 2.53 mmol) in CH_2CI_2 (11.0 ml) was added. The mixture was stirred at 60°C for 20 h in a pressure vessel. After addition of another portion of 8 (560 mg, 1.71 mmol, dissolved in CH_2CI_2 (2.0 ml)) and stirring at 60°C for 6.5 h the reaction was stopped by addition of pyridine (1.0 ml). The mixture was stirred at 20°C for 30 min. The molecular sieves were filtered off and washed with methanol. The combined filtrates after solvent evaporation and MPLC (column C, hexanes-CHCl₃-ethanol 6:1:1) furnished 12a (0.82 g, 70 %): 58 mg (11 %) of 7 were recovered.- M.p. 232-233°C (from ethanol, colourless needles).- ¹H NMR (80 MHz, CDCl₃): $\mathcal{E} = 1.30$ and 1.46 (2s, 6H, isopropylidene CH_3); 1.90 (s, 3H, NHAc); 2.00 (s, 3H, OAc); 2.01 (s, 3H, OAc); 2.05 (s, 3H, OAc); 3.79 (s, 3H, CO_2CH_3); 3.50-3.89 (1H, 5-H^E); 4.00-4.51 (SH)

and 4.57-5.43 (7H, ring protons, $-CH_2-CH=CH_2$); 5.52-6.10 (2H, =CH- and NH).- IR (CHCl₃): 3620-3180 (NH), 1740 (CO), 1680 (amide I), 1530 cm⁻¹ (amide II).- MS (Cs⁺, matrix: DMSO/glycerol); m/z(%) = 618 (6, [M+H]⁺), 576 (2), 560 (4), 558 (2), 502 (2), 414 (2), 404 (4), 330 (100, [E]⁺), ⁴⁵ 288 (16), 272 (15), 270 (14), 250 (22), 228 (25), 210 (64).- (Found: C, 52.42; H, 6.38. $C_{27}H_{39}NO_{15}$ (617.6) requires C, 52.51; H, 6.37).

10 and 11a from 6.

a) 6 (100 mg, 0.403 mmol) was dissolved in a 0.16 molar solution of 8 in 1:1 toluene-nitromethane (5.0 ml, 0.8 mmol). After addition of a 0.039 molar solution of anhydrous p-toluenesulfonic acid in toluene (0.6 ml, 23.4 μ mol), the mixture was stirred at 70°C for 21 h. The reaction was then stopped by addition of pyridine (0.1 ml). After stirring at 20°C for 0.5 h and solvent evaporation (codistillation with toluene), MPLC (column B, methanol-CHCl₃ 1:15) furnished 10 (75 mg, 33 %) and 11a (84 mg, 36 %); 28 mg (28 %) of 6 were recovered.

b) To a mixture of 6 (40 mg, 161 μ mol), Hg(CN)₂ (35 mg, 140 μ mol), and HgBr₂ (52 mg, 144 μ mol) in CH₂Cl₂ (0.4 ml) a solution of 9 (210 mg, 514 μ mol) in CH₂Cl₂ (1.0 ml) was added. After 3 d at 40°C another portion of 9 (210 mg, 514 μ mol dissolved in CH₂Cl₂ (1.0 ml)) was added. After a total of 6 d at 40°C the mixture was filtered. The filtrate was extracted with saturated aq. sodium sulfide (4 ml). Usual work-up (CHCl₃) and MPLC (column B, methanol-CHCl₃ 1:15) furnished 10 (49 mg, 53 %) and 11a (32 mg, 35 %); 0.5 mg (2 %) of 6 were recovered.

<u>Methyl [allyl 3-0-(2-acetamido-3,4,6-tri-0-acetyl-2-deoxy-8-D-glucopyranosyl)-α-D-galactopyrano-</u> <u>sid]uronate (10)</u>

M.p. 214.5-218°C (from ethanol).- ¹H NMR (400 MHz, $CDCl_3$): see Table 4.- ¹³C NMR (100.6 MHz, $CDCl_3$, DEPT): see Table 4.- IR ($CHCl_3$): 3630-3150 (OH, NH), 1745 (CO), 1675 (amide I), 1520 cm⁻¹ (amide II).- MS (Cs^+ , matrix: DMSO/glycerol): m/z(%) = 578 (3, $[M+H]^+$), 520 (2), 436 (3), 330 (82, $[E]^+$), ⁴⁵ 288 (8), 270 (8), 228 (12), 210 (46), 168 (96), 150 (100), 126 (54), 108 (68).- (Found: C, 49.87; H, 6.15. $C_{22}H_{25}NO_{15}$ (577.5) requires C, 49.91; H, 6.11).

Methyl [allyl 2-0-(2-acetamido-3,4,6-tri-0-acetyl-2-deoxy-β-D-glucopyranosyl)-α-D-galactopyranosid]uronate (11a)

M.p. 240-243°C (from ethanol, colourless needles).- ¹H NMR (400 MHz, $CDCl_3$, COLOC, COSY, ¹H, ¹³C correlation): see Table 4.- ¹³C NMR (100.6 MHz, $CDCl_3$, DEPT): see Table 4.- IR ($CHCl_3$): 3630-3150 (OH, NH), 1745 (CO), 1675 (amide I), 1530 cm⁻¹ (amide II).- MS (Cs⁺, matrix: DMSO/glycerol): m/z(%) = 578 (4, [M+H]⁺), 520 (1), 502 (2), 484 (3), 460 (3), 330 (84, [E]⁺), ⁴⁵ 288 (4), 270 (7), 228 (11), 210 (42), 168 (94), 150 (100), 126 (60), 108 (74).- (Found: C, 49.86; H, 6.10. $C_{24}H_{35}NO_{15}$ (577.5) requires C, 49.91; H, 6.11).

11a from 12a.

A solution of 12a (0.81 g, 1.31 mmol) in 20% aq. acetic acid was stirred at 100°C for 30 min. Usual work-up (1. CH₂Cl₂, 2. ethyl acetate) furnished 11a (0.75 g, 99 %).

Methyl [allyl 2-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl)-3-O-trichloroacetylcarbamoyl-α-D-galactopyranosid]uronate (11b).

To a solution of 11a (31.6 mg, 54.8 μ mol) in CH₂Cl₂ (0.3 ml) trichloroacetyl isocyanate (6.5 μ l, 54.7 μ mol) was added. The reaction mixture was left at -40°C for 15 min. The solution was then allowed to warm to 20°C. Addition of anhydrous methanol (0.1 ml) followed by MPLC (column A, hexanes-CHCl₂-ethanol 3:1:1) gave 11b (41 mg, 98 %, the ¹H NMR spectra indicated the presence of an

	<u>H NMR</u>	data		<u>C_NP</u>	IR_data		
Assignment	6	10	<u>11a</u>	6	10	<u>11a</u>	Assignment
<u>unit E</u>							<u>unit E</u>
					171.78	171.69	NHCOCH3
					170.89,	170.86,	OCOCH 3
					170.71,	170.59,	-
					168.99	169.39	
1-H		4.97 (d)	4.79 (d)		101.70	102.75	C-1
2-H		4.00-4.22	3.97 (m)		54.85	54.52	C-2
3-н		5.27 (dd)	5.16 (dd)		72.10	73.04	C-3
4-H		5.00 (t)	5.01 (t)		68.71	68.43	C-4
5-H		3.76 (m)	3.73 (m)		71.78	71.65	C-5
^{CH} 2 ⁻⁶		4.00-4.22	4.10-4.15 (m)		62.18	62.18	C-6
NHAC		6.58 (d)	6.70 (d)				
NHCOCH		1.92 (s)	1.90 (s)		23.26	23.18	NHCOCH3
OCOCH 3		2.00,	2.00,		20.71,	20.72,	OCOCH3
		2.07 (s)	2.01,		20.61,	20.57	
			2.05 (s)		20.55		
<u>unit F</u>							<u>unit F</u>
1-H	5.41 (d)	5.03 (d)	5.18 (d)	100.22	97.92	97.67	C-1
2-H	4.55 (dd)	3.90 (dd)	3.87 (dd)	69.84	69.81 [#]	78.69	C-2
3-н	4.67 (dd)	4.00-4.22	4.08 (m, broad)	70.93	79.44	67.69	C-3
4-H	4.85 (dd)	4.38 (dd, broad)	4.32 (m, broad)	72.05+	67.33	70.54	C-4
5-H	4.93 (d)	4.42 (d)	4.46 (d)	72.41+	70.11	70.13	C-5
				170.39	169.34	169.53	C-6
со ₂ сн ₃	3.68 (s)	3.78 (s)	3.79 (s)	51.73	52.49	52.57	CO2CH3
OH	4.97 (s, broad)	4.00-4.30	3.92-4.29				
	6.73 (s, broad)						
	6.68 (s, broad)						
6: $J_{1,2}$ 10: $J_{1,2}$ 11a: $J_{1,2}$	= 3.5 Hz, $J_{2,3}$ = = 3.5 Hz, $J_{3,4}$ = = 3.5 Hz, $J_{2,3}$ =	10.5 Hz, $J_{3,4} = 3$. 3.0 Hz, $J_{4,5} = 1$. 10.0 Hz, $J_{4,5} = 1$.	5 Hz, J _{4.5} = 1.5 5 Hz. 0 Hz.	Hz.			
<u>allyl grou</u>	248,49 P					<u>all</u>	yl group ⁴⁸
1-H	4.15	3.82-3.90 (m)	4.04	68.96	69.05	69.25	C-1
1'-H	4.36	4.00-4.22	4.16				-
± ••							

Table 4. ¹H NMR and ¹³C NMR spectral data of compounds 6, 10 and 11a.

'⁷Assignments based on comparison with 4a and 4b.

#Assignments may have to be reversed.

impurity (about 20 %)).- ¹H NMR (400 MHz, $CDCl_3$, COSY): see Table 5.- IR ($CHCl_3$): 3630-3100 (OH, NH), 1795 ($COCCl_3$), 1740 (CO), 1675 (amide I), 1500 cm⁻¹ (amide II).- $C_{27}H_{35}Cl_3N_2O_{17}$ (765.9), MS (Cs^+ , matrix: DMSO/glycerol): m/z(%) = 765⁴⁶ (36, [M+H]⁺), 621 (37), 579 (19), 563 (21), 502 (42), 484 (41), 460 (100), 442 (23), 402 (22), 382 (18).- In a second MS experiment (Cs^+ , matrix: DMSO/glycerol) the following result was obtained: m/z(%) = 330 (42, [E]⁺), ⁴⁵ 210 (35), 169 (100), 150 (98), 138 (46), 126 (78), 103 (99).

Methyl [allyl 2-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-8-D-glucopyranosyl)-4-O-acetyl-3-O-carbamoyl-α-D-galactopyranosid]uronate (11c).

The crude reaction mixture prepared from 11a (230 mg, 398 μ mol) and trichloroacetyl isocyanate as described above was filtered through SiO₂ (4.5 g, elution with hexanes-CHCl₃-ethanol 3:1:1) to give 11a (8 %), and methyl [allyl-2-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-8-D-glucopyranosyl)-3-O-carbamoyl- α -D-galactopyranosid]uronate (4 %),³⁴ and as main product 11b which was immediately acetylated with acetic anhydride-pyridine-4-dimethylaminopyridine. The reaction mixture was left at 20°C for 1 h. After addition of ethyl acetate and ethanol, solvent evaporation and MPLC (column B, hexanes-CHCl₃-ethanol 4:1:1) furnished 11c (152 mg, 58 %) and 13 (60 mg, 25 %).- M.p. 119-121°C (from ethyl acetate-hexanes).- ¹H NMR (400 MHz, CDCl₃): see Table 5.- ¹³C NMR (100.6 MHz, CDCl₃, DEPT): see Table 5.- IR (CHCl₃): 3600-3200 (NH), 1740 (CO), 1670 (amide I), 1580, 1510 cm⁻¹ (amide II).- MS (Cs⁺, matrix: DMSO/glycerol); m/z(%) = 795 (1.4, [M+Cs]⁺), 663 (3, [M+H]⁺), 621 (1), 605 (1), 502 (1), 484 (0.4), 460 (0.4), 370 (1), 330 (66, [E]⁺), 228 (10), 210 (35), 168 (91), 150 (9), 133 (100), 126 (59), 108 (86).- (Found: C, 49.00; H, 5.72. C₂₇H₃₈N₂O₁₇ (662.6) requires C, 48.94; H, 5.78).

Methyl [allyl 2-0-(2-acetamido-3,4,6-tri-0-acetyl-2-deoxy-B-D-glucopyranosyl)-3-0-acetyl-4-deoxy-B-L-threo-hex-4-enopyranosid]uronate (13).

M.p. 138-139.5°C (from ethyl acetate-hexanes).- ¹H NMR (400 MHz, $CDCl_3$, COSY): see Table 5.- ¹³C NMR (100.6 MHz, $CDCl_3$, DEPT): see Table 5.- IR $(CHCl_3)$: 3600-3220 (NH), 1740 (CO), 1675 (amide I), 1505 cm⁻¹ (amide II).- MS (Cs⁺, matrix: DMSO/glycerol): m/z(%) = 602 (2, [M+H]⁺), 560 (1), 542 (1), 484 (1), 443 (1), 361 (1), 330 (66, [E]⁺), ⁴⁵ 210 (32), 168 (94), 150 (82), 138 (47), 126 (76), 108 (100).- (Found: C, 52.00; H, 5.83. $C_{26}H_{35}NO_{15}$ (601.6) requires C, 51.91; H, 5.86).

Methyl 2-0-(2-acetamido-3,4,6-tri-0-acetyl-2-deoxy-β-D-glucopyranosyl)-4-0-acetyl-3-0-carbamoyl-Dgalactopyranuronate (11d).

A mixture of 11c (200 µmol) and PdCl₂ (75 mg, 373 µmol) in a 0.1 molar solution of NaOAc in 20:1 acetic acid-water (4.0 ml) was stirred at 20°C for 24 h. Usual work-up (ethyl acetate) and MPLC (column A, hexanes-CHCl₃-ethanol 3:1:1.3) furnished 11d (81 %); 6 % of 11c were recovered.- ¹H NMR (80 MHz, CDCl₃): $\delta = 1.91$ (s, NHAc); 2.00 (s, OAc); 2.09 (s, OAc); 3.33-4.31 (ring protons), 3.71 (s, CO₂CH₃); 4.60-5.85 (ring protons, -NH₂); 6.31 (d, NHAc); 6.52 (d, NHAc). Appearance of two NHAc signals (ratio 1:1) is indicative of the two anomeric forms of 11d.- J_{NH,2}(E) = 8.5 Hz (for both signals).- IR (CHCl₃): 3610-3110 (OH, NH), 1730 (CO), 1665 (amide I), 1580, 1515 cm⁻¹ (amide II).

Methyl 2-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-8-D-glucopyranosyl)-3,4-O-isopropylidene-Dgalactopyranuronate (12b).

12b was prepared from 12a exactly as described for 11d. Yield 83 %.- ¹H NMR (80 MHz, $CDCl_3$): $\delta = 1.30$ (s, CCH_3); 1.47 (s, CCH_3); 1.90-2.10 (NHAc- and OAc-signals); 3.50-3.96 (ring protons), 3.80 (s, CO_2CH_3); 4.08-4.58 (ring protons); 4.77-5.42 (ring protons, $-NH_2$); 5.74 (d, NHAc); 5.79 (d, NHAc). Appearance of two NHAc signals (ratio 6:4) is indicative of the two anomeric forms of 12b.-J_{NH,2}(E) = 8.5 Hz (for both signals).- IR (CHCl₃): 3620-3150 (OH, NH), 1745 (CO), 1685 (amide I), 1520 cm⁻¹ (amide II).

	¹ H NMR	data		¹³ C NMR	data	
Assignment	11b	11¢	13	11c	13	Assignment
<u>unit E</u>						<u>unit E</u>
				170.60,	170.41,	OCOCH
				170.40,	170.30	- 3
				169.59 [#]	170.16	
				170.94	170.51	NHCOCH
1-H	5.05 (d)	5.11 (d)	5.20 (d)	100.66	100.02	 C-1
2-H	3.77 (m)	3.72 (m)	3.67-3.79 (m)	56.04	56.27	C-2
3-H	5.29 (m)	5.57 (dď)	5.59 (dd)	74.21	71.66	C-3
4-H	5.01 (t)	5.00 (t)	4.95 (t)	68.58 ⁺	67.96+	C-4
5-ห	3.78 (m)	3.38 (m)	3.31 (m)	71.57++	70.97+	C-5
CH6	4.10-4.20	4.06-4.23	4.05-4.20	61.99	61.96	C-6
NHÃC	6.27 (s, broad)	5.93 (d)	5.76-5.82			
NHCOCH	1.91 (8)	1.89 (s)	1.85 (s)	23.33	23.16	NHCOCH,
ococh	2.00,	2.00,	1.97 ,	20.76##'	20.96 ^{##} ,	oco <u>c</u> h _a
	2.06 (s)	2.06 (s)	2.03 (s)	20.69##	20.66##,	Ũ
					20.60##	
<u>unit F</u>	2,0	0,1	-10			<u>unit F</u>
				167.78	162.08	о <u>с</u> осн ^з
				155.62		OCONH2
1-H	5.20 (d)	5.22 (d)	5.31 (d)	97.75	98.51	C-1
2-H	4.22 (dd)	3.99 (dd)	3.97 (dd)	77.20	75.56	C-2
3-Н	5.11 (dd)	5.18 (dd)	5.65 (dd)	68.81	68.84	C-3
4-H	4.75 (m)	5.75 (dd)	5.91 (d)	71.18	109.24	C-4
5-H	4.56 (d)	4.61 (d)		69.87 460.65 [#]	141.15	C-5
~ ~	0.70.4.	0.74 (-)	0.75 ()	169.65	169.56	C-6
CO2CH3	3.79 (s)	3./1 (8)	3.75 (8)	52.60	52.40 00 57 ^{##}	
COCH ₃	4 07 4 95	2.09 (5)	2.07 (8)	20.04	20.57	000 <u>0</u> n ₃
	4.07-4.25	4 05 5 06				
^{NH/NH} 2	9.75-10.50	4.93-5.06				
11b, 11c: 13:	$J_{1,2} = 3.5 \text{ Hz}, J_{2}$ $J_{1,2} = 3.0 \text{ Hz}, J_{2}$	$A_{3,3} = 10.5 \text{ Hz}, J_{3,3}$ $A_{3,3} = 9.0 \text{ Hz}, J_{3,3}$	3,4 = 3.5 Hz, J _{4,5} = ,4 = 2.8 Hz.	1.5 Hz.		
allyl grou	48,49 2					<u>allyl group⁴⁸</u>
1_H	4 10	4 06-4 23	4.10-4.25	69.30	69.74	C-1
1'_H	4 21	4 06-4 23	4.10-4.25	02.00	····	01
1 - 1	4.21	4.00-4.23	4,10-4.40			

Table 5: ¹H NMR spectral data of compounds 11b, 11c, and 13 and ¹³C NMR spectral data of 11c and 13

* Sharp signal, no coupling with the hydroxyl proton. **,+,++,#,## Assignments may have to be reversed.

Methyl 2-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl)-1-O-[(2,2-dimethyl-propyloxy)-(2,2,2-trichloro-1,1-dimethyl-ethoxy)-phosphoryl]-3,4-O-isopropylidene-α-D-galactopyranuronate (14a).

To a solution of 1H-1,2,4-triazole (35.8 mg, 518 µmol) in 4:1 THF-pyridine (0.30 ml) 2,2,2trichloro-1,1-dimethyl-ethyl phosphorodichlorodite (15, X = Cl) (24.8 µl, 124 µmol) was added at 0°C and the mixture was stirred at 0°C for 20 min. A solution of 12b (65.0 mg, 113 µmol) in THF (0.80 ml) was added and the mixture was stirred at 0°C for 4 h. Then a solution of neopentyl alcohol (12.2 mg, 139 µmol) in THF (0.55 ml) was added and stirring was continued for 1 h. After solvent evaporation (25°C, argon stream) the residue was redissolved in CH₂Cl₂ (1.20 ml) and bis(trimethylsilyl)peroxide (17, 24 µl, 114 µmol) was added. Stirring at 20°C for 12 h, followed by solvent evaporation (25°C, argon stream) and MPLC (column A, hexanes-ethyl acetate-ethanoltriethylamine⁴⁷ 5:1:1:0.07) gave 14a (23 mg, 23 %); 26 mg (41 %) of 12b were recovered.- ¹H NMR (80 MHz, [D₅] pyridine): δ = 0.94 (s, 6H, CH₂C(CH₃)₃); 1.06 (s, 3H, CH₂C(CH₃)₃); 1.40 and 1.50 (2s, 6H, isopropylidene CH₃); 1.95-2.22 (18H, OAC, C(CH₃)₂CCl₃ signals); 3.77 (s, 3H, CO₂CH₃); 3.93 and 4.01 (2H, CH₂C(CH₃)₃); 4.01-5.05 (7H, CH₂-6^E, ring protons); 5.27-5.60 (3H, ring protons); 5.71-6.04 (1H, ring proton), 6.45 (dd, 1H, 1-H^F); 9.33 (d, broad, 1H, NHAC). - $J_{1,2}(F) = 3.2$ Hz, $J_{1,P}(F)$ = 5.5 Hz, $J_{NH,2(E)}$ = 9.0 Hz.- IR (CHCl₃): 3650-3200 (NH), 1750 (CO), 1695 (amide I), 1515 cm⁻¹ (amide II).- $C_{33}H_{51}Cl_{3}NO_{18}P$ (887.1), MS (Xe, matrix: glycerol); m/z(%) = 886 (3, $[M+H]^+$), 728 (3), 560 (14, [EF]⁺), 518 (3), 502 (7), 484 (5), 460 (5), 330 (99, [E]⁺), ⁴⁵ 278 (12), 270 (13), 210 (45), 168 (86), 150 (100), 138 (36), 126 (57), 118 (38), 108 (65).

<u>Methyl 2-0-(2-acetamido-3,4,6-tri-0-acetyl-2-deoxy-β-D-glucopyranosyl)-1-0-[(2,2-dimethylpropyl-</u> oxy)-hydroxy-phosphoryl]-3,4-0-isopropylidene-α-D-galactopyranuronate (14b), triethylammonium salt.

To a solution of 14a (5.6 mg, 6.3 µmol) in pyridine (0.2 ml) Zn-Cu couple (4.2 mg) and 2,4pentanedione (10 µl) were added and the mixture was stirred under argon at 20°C for 4 h. Solids were filtered off, washed with ethyl acetate and methanol, and the combined filtrates were evaporated after addition of toluene. LC (SiO₂ (2.1 g), ethyl acetate-methanol-triethylamine 5:1:0.5) furnished the triethylammonium salt of 14b (6 mg, 100 %).- ¹H NMR (400 MHz, CDCl₃): $\delta = 0.89$ (s, 9H, CH₂C(CH₃)₃); 1.32 and 1.47 (2 s, 6H, isopropylidene CH₃); 1.95 (s, 3H, NHAc); 2.00 (s, 6H, OAc); 2.06 (s, 3H, OAc); 3.49-3.57 (2H, CH₂C(CH₃)₃); 3.62-3.68 (1H, ring proton); 3.74-3.85 (1H, ring proton); 3.78 (s, 3H, CO₂CH₃); 3.97-4.01 (1H, ring proton); 4.06 and 4.20 (2H, CH₂-6^E); 4.39 (dd, 1H, 3-H^F); 4.48 (dd, 1H, 4-H^F); 4.98 (t, 1H, 4-H^E); 4.99 (d, 1H, 5-H^F); 5.05 (d, 1H, 1-H^E); 5.26 (dd, 1H, 3-H^E); 5.65 (dd, 1H, 1-H^F); 6.52 (d, broad, 1H, NHAc).- J_{1,2(F)} = 3.2 Hz, J_{1,P(F)} = 7.2 Hz, J_{2,3(F)} = 7.5 Hz, J_{3,4(F)} = 5.5 Hz, J_{4,5(F)} = 2.5 Hz.- J_{1,2(E)} = 8.5 Hz, J_{2,3(E)} = 10.5 Hz, J_{3,4(E)} = J_{4,5(E)} = 9.5 Hz, J_{NH,2(E)} = 8.0 Hz, J_{5,6(E)} = 2.5 Hz. J_{5,6'(E)} = 5.0 Hz. HJ_{6,6'(E)} = 12.0 Hz.

Preparation of 14c, 14d, and 18.

General procedures:

a) To a solution of 1H-1,2,4-triazole (95.0 mg, 1.37 mmol) in 4:1 CH_2Cl_2 -pyridine (1.50 ml) 15 (X = Cl) (60.0 µl, 300 µmol) was added at 0°C and the mixture was stirred at 0°C for 10 min. The disaccharide (11d or 12b) (265 µmol), dissolved in CH_2Cl_2 (1.35 ml), was added and the mixture was stirred at 0°C for 4 h. Then a solution of methyl (R)-3-hydroxy-2-(3,8,8,11,14,18-hexamethyl-nonadecyloxy)-propionate (16, 216 mg, 460 µmol) in CH_2Cl_2 (1.50 ml) was added. After 40 min and 110 min at 0°C additional amounts of 16 (70.6 mg, 150 µmol in each case, dissolved in CH_2Cl_2 (0.3 ml)) were added. Stirring at 0°C was continued for a total of 3 h. Then bis(trimethylsilyl)peroxide (17, 80.0 µl, 377 µmol) was added at 0°C and the mixture was stirred at 20°C for 15 h and then filtered through SiO₂. The filtrate was evaporated, the residue taken up in pyridine (5.4 ml) and then Zn-Cu couple (234 mg) and 2,4-pentandione (272 µl) were added and the mixture was stirred under argon at

20°C for 4 h. Solids were filtered off, washed with ethyl acetate and methanol and the combined filtrates were evaporated after addition of toluene.

b) The general procedure a) was used. After oxidation with bis(trimethylsilyl)peroxide and filtration through SiO₂, the filtrate was evaporated and the residue was separated by MPLC to give the pure phosphoric acid triester.

c) From the pure triester obtained using method b) the 2,2,2-trichloro-1,1-dimethyl-ethyl protecting group was reductively (Zn-Cu couple) removed as described in a).

Methyl 2-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl)-3,4-O-isopropylidene-1-O-{[(R)-2-methoxycarbonyl-2-(3,8,8,11,14,18-hexamethyl-nonadecyloxy)-ethoxy]-(2,2,2-trichloro-1,1dimethylethoxy)-phosphoryl)-α-D-galactopyranuronate (14c).

Pure 14c was obtained using the general procedure b) (column B, hexanes-ethyl acetate-ethanol-triethylamine 7:1:1:0.08). Yields: 20 % of 14c and 12 % of a compound supposed to be the B-anomer.³⁴-¹H NMR (80 MHz, CDCl₃): $\mathscr{E} = 0.77$ -1.00 (21H, I); 1.03-1.40 (28H, I); 1.36 (s, 3H) and 1.52 (s, 3H, isopropylidene CH₃); 1.89-2.00 (9H, NHAc, C(CH₃)₂CCl₃); 2.02 (s, 6H, OAc); 2.09 (s, 3H, OAc); 3.43-3.91 (10H, ring protons), containing 3.78-3.83 (4s, 6H, CO₂CH₃); 3.91-4.60 (8H, ring protons); 4.85-5.86 (5H, ring protons, -NH₂); 5.95 (dd, 1H, 1-H^F).- J_{1,2(F)} = 3.3 Hz, J_{1,P(F)} = 6.2 Hz.

Methyl 2-0-(2-acetamido-3,4,6-tri-0-acetyl-2-deoxy-β-D-glucopyranosyl)-3,4-0-isopropylidene-1-0-([(R)-2-methoxycarbonyl-2-(3,8,8,11,14,18-hexamethyl-nonadecyloxy)-ethoxy]-hydroxy-phosphoryl}-α-Dgalactopyranuronate (14d), triethylammonium salt.

i) From 14c pure 14d was obtained using the general procedure c) followed by MPLC (column A, short, ethyl acetate-methanol-triethylamine 9:1:0.5). Yield: 100 %.

ii) The general procedure a) was used. For filtration of the phosphate-triester through SiO_2 (vide supra) hexanes-ethyl acetate-ethanol 2:1:1 was used as eluent. 14d was purified by MPLC (column B, ethyl acetate-methanol-triethylamine 10:1:0.4). Yield: 22 % of 14d, alongside with a compound presumed to be the 8-anomer (11 %);³⁴ 36 % of 12b were recovered.

¹H NMR (80 MHz, $CDCl_3$): $\delta = 0.70-0.99$ (21H, I); 1.00-1.45 (28H, I); 1.31 (t, $(C\underline{H}_3CH_2)_3NH^+$); 1.32 (s, 3H) and 1.49 (s, 3H, isopropylidene-CH₃); 1.95 (s, 3H, NHAc); 2.00 (s, 6H, OAc); 2.05 (s, 3H, OAc); 3.03 (q, $(CH_3C\underline{H}_2)_3NH^+$); 3.40-3.83 (10H, ring protons), containing 3.72 (s, 3H, CO_2CH_3) and 3.79 (s, 3H, CO_2CH_3); 4.00-4.56 (7H, ring protons); 4.82-5.48 (4H, ring protons, $-NH_2$); 5.59 (dd, 1H, $1-H^F$); 6.59 (d, 1H, $N\underline{H}Ac$).- $J_{1,2(F)} = 3.3 Hz$, $J_{1,P(F)} = 7.5 Hz$, $J_{NH,2(E)} = 8.0 Hz$.- ¹³C NMR (100.6 MHz, [D₆] acetone, DEPT): see Table 6.- IR (CHCl₃): 3600-3200 (NH), 1740 (CO), 1670 (amide I), 1525 cm⁻¹ (amide II).- $C_{53}H_{92}NO_{21}P$ (1110.3), MS (Xe, matrix: glycerol): m/z(%) = 1154 (100, [M+2Na-H]⁺), 1132 (59, [M+Na]⁺), 1110 (14, [M+H]⁺), 1096 (32), 855 (13), 818 (9), 803 (14), 802 (6), 702 (13), 574 (4), 573 (9, [GHI+Na]⁺).

Methyl 2-0-(2-acetamido-3,4,6-tri-0-acetyl-2-deoxy-8-D-glucopyranosyl)-4-0-acetyl-3-0-carbamoyl-1-0-{[(R)-2-methoxycarbonyl-2-(3,8,8,11,14,18-hexamethyl-nonadecyloxy)-ethoxy]-hydroxy-phosphoryl}-a-D-galactopyranuronate (18), triethylammonium salt.

The general procedure a) was used. For the crude triester filtration through SiO₂ elution was performed with hexanes-ethyl acetate-ethanol-triethylamine 3:2:1:0.02 (20 % of 11d were recovered at this stage). Purification of 18 by LC (ethyl acetate-methanol-triethylamine 7:1:0.3) provided 18 in 21 % yield alongside with the 8-anomer (7 %);³⁴ 16 % of 11d were recovered.⁻¹ H NMR (400 MHz, [D₅] pyridine, COSY, ¹H,¹³C correlation): see Table 6.- ¹³C NMR (100.6 MHz, [D₅] pyridine, DEPT): see Table 6.- IR (CHCl₃): 3620-3220 (NH), 1745 (CO), 1670 (amide I), 1590, 1540 cm⁻¹ (amide II).- $C_{53}H_{91}N_2O_{23}P$ (1155.3), MS (Xe, matrix: triethanolamine): m/z(%) = 1194 (8, $[M+K]^+$), 1178 (18,

	18	160	18	19	2	Accienzent
unit E			AY		#	unit E
COCH.		171.68, 171.02	. 170.98. 170.7	5.		OCOCH
<u> </u>		170.47	170.48	- •		~ 3
NHCOCH		172.14	171.63	169.2	169.4	NHCOCH
1-H	5 72 (d)	100 59	101.51	102.6	102.7	C-1
2-H	J.72 (α) 4 33 (m)	55 05	55 43	55.5	55.5	C-2
2-n 2_4	4.33 (m) 5.95 (dd)	74 59	73 52	74 1	74 3	C-3
л ц	5.95 (44)	60.34	69 69	70.7	70.7	C-4
4-n c u	3.43(0)	72 61	72 03	70.7	77 0	C-5
5-л с и	3.89-3.96 (m)	72.01 60.01	72.03 60 /7	61 1	61 1	C_6
	4.40 (m)	02.91	02.47	01.1	01.1	0.0
6 -H	4.55 (m)					
NHAC	9.13 (d)	22.22	00 /0	02.0	02.1	NUCOCU
NHCOCH ₃	1.91 (8)	23.32	23.40	23.0	23.1	NACOUR ₃
OCOCH ₃	2.06, 2.02,	20.88, 20.71,	20.74 , 20.6	ο,		OCO <u>C</u> R ₃
	1.99 (s)	20.67	20.54			
18 : $J_{1,2} = 8$. $J_{5,6} = 2$.	5 Hz, $J_{2,3} = 10.5$ 5 Hz, $J_{5,6} = 4.3$	Hz, $J_{3,4} = J_{4,5}$ Hz.	≖ 9.5 Hz, J _{NH,2}	≖ 8.5 Hz, IJ ₆ ,	,6 [,] = 12.	0 Hz,
unit F						unit H
			168.37	168.8		OCOCH,
CONH	5.05-5.55		157.12	155.8	156.4	CONH,
2		110.18				(CH_) 2
1-Н	6.53 (dd)	93.99	95.88	93.7	94.1	C-1
2-H	4.66	75.59	75.47	75.5	75.1	C-2
3-H	5.96 (dd)	71 11	68 87	67.9	67.9	C-3
2-11 4-11	6 42 (dd)	73 23	71 01	2	72.6	C-4
	5.42 (dd)	40 0/ [*]	69 9/	69.6	2.0	C-5
5-n	J.49 (U)	170.01 ++	160 96++	169.0	170 4 ⁺⁺	C-1
00 <i>0</i> 11	2 75 [#] (-)	E2 20 [#]	E1 07	100.4	170.4	CO CH
2 ^{CH} 3	3.73 (6)	34.49	J1.07	10.0		
OCOCH 3	2.23 (8)		20.42	19.9		UCU <u>C</u> H
$\begin{array}{l} \mathbf{18:} \ \mathbf{J}_{1,2} = 3. \\ \mathbf{I}^{3} \mathbf{J}_{C,P} \mathbf{I} = 8. \end{array}$.5 Hz, J _{1,P} = 7.0 1 1 Hz.	Hz, J _{2,3} = 11.0	Hz, J _{3,4} = 3.5 Hz	, J _{4,5} = 1.5 H	iz, I ² J _{C,P}	i = 5.9 Hz,
<u>unit G</u>						unit (
HN ⁺ (CH ₂ CH ₂)	3.04 (q)		45.79	45.4	45.3	$HN^{+}(CH_{2}CH_{3}),$
$HN^+(CH_2CH_3)_3$	1.28 (t)		8.75	8.7	8.6	$HN^+(CH_2CH_3)$
unit H			++	**	++	<u>unit l</u>
unge n		169.81	169.71	172.2	172.1	C-:
C-1			70 50		79.0	C-2
С-1 2-Н	4.51 (dd)	79.57	79.50	79.1		
С-1 2-Н 3-Н	4.51 (dd) 4.60-4.69 (m.)	79.57 66.37	66.47	79.1 65.4	65.1	C-:
<u>с-1</u> 2-н 3-н 3 -н	4.51 (dd) 4.60-4.69 (m.) 4.71-4.79 (m.)	79.57 66.37	79.38 66.47	79.1 65.4	65.1	C-:
с-1 2-н 3-н 3 -н со ₂ сн ₃	4.51 (dd) 4.60-4.69 (m) 4.71-4.79 (m) 3.68 [#] (s)	79.57 66.37 52.68 [#]	66.47	79.1 65.4	65.1	с-: со ₂ сн
$ \frac{G_{12} - H}{2 - H} = \frac{1}{2 - H} = \frac{1}$	4.51 (dd) 4.60-4.69 (m) 4.71-4.79 (m) 3.68 [#] (s) .5 Hz, J _{2,3} , = 6.0	79.57 66.37 52.68 [#] Hz, I ² J _{C,P} I = -	79.38 66.47 52.13 [#] 4.0 Hz, ³ J _{C,P} ↓ =	/9.1 65.4 8.0 Hz. 14d :	65.1	С-: со ₂ сн. 8.0 Hz.
$\frac{1}{2-H}$ 2-H 3-H 3 -H CO_2CH_3 18: $J_{2,3} = 4$ unit I	4.51 (dd) 4.60-4.69 (m) 4.71-4.79 (m) 3.68 [#] (s) .5 Hz, J _{2,3} , = 6.0	79.57 66.37 52.68 [#] Hz, I ² J _{C,P} I = -	79.38 66.47 52.13 [#] 4.0 Hz, l ³ J _{C,p} l ≈	/9.1 65.4 8.0 Hz. 14d:	65.1	C-: CO ₂ CH 8.0 Hz. unit
$\frac{1}{2-H}$ 2-H 3-H 3 -H CO ₂ CH ₃ 18: J _{2,3} = 4. unit I	4.51 (dd) 4.60-4.69 (m) 4.71-4.79 (m) 3.68 [#] (s) .5 Hz, $J_{2,3}$, = 6.0	79.57 66.37 52.68 [#] Hz, I ² J _{C,P} I = -	79.38 66.47 52.13 [#] 4.0 Hz, (³ J _{C,P}	/9.1 65.4 8.0 Hz. 14d: 67 9	65.1 I ³ J _{C,P} I =	C-: CO ₂ CH 8.0 Hz. <u>unit</u>
$\frac{1}{2-H}$ 2-H 3-H 3 -H CO ₂ CH ₃ 18: J _{2,3} = 4. unit I 1-H 1 -H	4.51 (dd) 4.60-4.69 (m) 4.71-4.79 (m) 3.68 [#] (s) 5 Hz, $J_{2,3}$, = 6.0 3.60-3.75 3.77-3.86 (m)	79.57 66.37 52.68 [#] Hz, I ² J _{C,P} I = - 69.75	79.38 66.47 52.13 [#] 4.0 Hz, I ³ J _{C,P} I ≈ 69.61	/9.1 65.4 8.0 Hz. 14d: 67.9	65.1 ³ J _{C,P} = 67.9	C-: CO ₂ CH 8.0 Hz. <u>unit</u> C-
$\frac{1}{2-H}$ $3-H$ $3-H$ $C^{0}2^{CH}3$ $18: J_{2,3} = 4$ $\frac{1}{1-H}$ $1-H$	4.51 (dd) 4.60-4.69 (m) 4.71-4.79 (m) 3.68 [#] (s) .5 Hz, $J_{2,3}$, = 6.0 3.60-3.75 3.77-3.86 (m)	79.57 66.37 52.68 [#] Hz, $I^2 J_{C,P} I = -$ 69.75 33.09	79.38 66.47 52.13 [#] 4.0 Hz, ³ J _{C,P} = 69.61 32.70	/9.1 65.4 8.0 Hz. 14d: 67.9 32 2	65.1 ³ J _{C,P} = 67.9 32.2	C-: CO ₂ CH. 8.0 Hz. <u>unit.</u> C

Table 6: ¹H NMR data of 18 and ¹³C NMR data of compounds 2, 18, 19, and 14d

#,+,++,*,** Assignments may have to be reversed.

 $[M+Na]^+$, 1156 (2, $[M+H]^+$), 1136 (2), 1118 (2), 739 (4), 683 (3), 622 (2), 605 (5, $[EF]^+$), 590 (19), 573 (11, $[GHI+Na]^+$), 551 (4, $[GHI+H]^+$), 391 (2), 330 (100, $[E]^+$).⁴⁵

Deprotecting of 18.

To a solution of **18** (25.5 mg, 20.3 μ mol) in anhydrous THF (2.35 ml) at 0°C a 0.29 molar aq. LiOH (570 μ l) was added, and the mixture was stirred at 0°C for 90 min. Excess base was neutralized by addition of Dowex 50 W-X2 (H⁺-Form, 100-200 mesh). Filtration, lyophilization, and MPLC (column A, CHCl₃-methanol-water 10:6:1) furnished **19** (7 mg, 32 %), **2** (13 mg, 61 %), and a fraction (2 mg) containing **19** and **2**.

<u>2-0-(2-Acetamido-2-deoxy-β-D-glucopyranosyl)-4-0-acetyl-3-0-carbamoyl-1-0-{[(R)-2-carboxy-2-(3.8,8.11,14,18-hexamethyl-nonadecyloxy)-ethoxy]-hydroxy-phosphoryl}-α-D-galactopyranuronic acid (19).</u>

The analytical sample was further purified by reversed-phase LC (HP 20, elution with water-methanol 10:0 to 0:10), followed by reversed phase MPLC (column A, 19 g of RP 18, methanol-water-acetonitrile 8:1:4).- 13 C NMR (100.6 MHz, [D₆] DMSO): see Table 6.- $C_{45}H_{81}N_{2}O_{20}P$ (1001.1), MS (Xe, matrix: triethanolamine): m/z(%) = 1062 (4, $[M+K+Na-H]^+$), 1046 (9, $[M+2Na-H]^+$), 1024 (5, $[M+Na]^+$), 1002 (4, $[M+H]^+$), 871 (2.7), 746 (4.7), 744 (3.8), 597 (6, $[GHI+K+Na-H]^+$), 581 (9, $[GHI+2Na-H]^+$), 560 (9), 557 (4), 487 (4, $[EF+Na]^+$), 337 (15), 286 (16), 241 (100).

<u>2-0-(2-Acetamido-2-deoxy-β-D-glucopyranosyl)-3-0-carbamoyl-1-0-{[(R)-2-carboxy-2-(3,8,8,11,14,18hexamethyl-nonadecyloxy)-ethoxy]-hydroxy-phosphoryl}-α-D-galactopyranuronic acid (2).</u>

The analytical sample was further purified by reversed-phase MPLC (column A, 19 g of RP 18, methanol-water-acetonitrile 8:1:4).- 13 C NMR (100.6 MHz, $[D_6]$ DMSO): see Table 6.- $C_{43}H_{79}N_2O_{19}P$ (959.0), MS (Xe, matrix: triethanolamine): m/z(%) = 1020 (11, M+K+Na-H]⁺), 1004 (25, $[M+2Na-H]^+$), 998 (14, $[M+K]^+$), 982 (46, $[M+Na]^+$), 727 (10), 725 (27), 598 (17), 581 (30, $[GHI+2Na-H]^+$), 560 (73), 544 (12), 445 (20, $[EF+Na]^+$), 337 (58), 321 (68), 299 (100).

<u>Acknowledgements</u> - We wish to thank Dr. J. van Heijenoort (Orsay) for the biological tests. Financial support by the Minister für Wissenschaft und Forschung des Landes Nordrhein-Westfalen (graduate fellowship to H. Hohgardt), the Hoechst AG, and the Fonds der Chemischen Industrie is gratefully acknowledged.

References and Notes

- Y. van Heijenoort, M. Leduc, H. Singer, and J. van Heijenoort, J. Gen. Microbiol. 133, 667 (1987), and references therein.
- P. Welzel, F. Kunisch, F. Kruggel, H. Stein, J. Scherkenbeck, A. Hiltmann, H. Duddeck, D. Müller, J. E. Maggio, H.-W. Fehlhaber, G. Seibert, Y. van Heijenoort, and J. van Heijenoort, Tetrahedron 43, 585 (1987).
- 3) Review: G. Huber, in "Antibiotics", ed. F. E. Hahn, Springer, Berlin 1979, vol. V/1, p. 135.
- Unpublished results.
- T. Schubert, F. Kunisch, and P. Welzel, Tetrahedron 39, 2211 (1983); U. Peters, W. Bankova, and P. Welzel, Tetrahedron 43, 3803 (1987).
- 6a) K.-I. Sato, K. Kubo, N. Hong, H. Kodama, and J. Yoshimura, Bull. Chem. Soc. Japan 55, 938 (1982); b) P. Welzel, H.-P. Bulian, A. Maulshagen, D. Müller, and G. Snatzke, Tetrahedron 40, 3657 (1984); c) J. Oltvoort, Ph. D. Thesis, University of Leiden, 1983.

7) P. Welzel, F.-J. Witteler, and D. Müller, Tetrahedron Lett. 1976, 1665.

- P. Westerduin, G. H. Veeneman, J. E. Marugg, G. A. van der Marel, and J. H. van Boom, Tetrahedron Lett. 27, 1211 (1986).
- For a new review, see: A. E. Stepanov and V. I. Shvets, Chemistry and Physics of Lipids 41, 1 (1986).
- 10) In cases where triester intermediates are involved one has to worry about the instability of these compounds, c. f. C. A. A. van Boeckel, J. P. G. Hermans, P. Westerduin, J. J. Oltvoort, G. A. van der Marel, and J. H. van Boom, Recl. Trav. Chim. Pays-Bas 102, 438 (1983); F. Iglesias Guerra, J. M. Neumann, and T. Huynh-Dinh, Tetrahedron Lett. 28, 3501 (1987).
- 11) M. A. Salam and E. J. Behrman, Carbohydr. Res. 102, 139 (1982), and references therein.
- T. Schubert, K. Hobert and P. Welzel, Tetrahedron 39, 2219 (1983); O. P. Srivastava and O. Hindsgaul, Carbohydr. Res. 143, 77 (1985), and references therein.
- 13) Review: F. Ramirez and J. F. Marecek, Synthesis 1985, 449.
- 14) R. R. Schmidt and M. Stumpp, Liebigs Ann. Chem. 1984, 680. Review: R. R. Schmidt, Angew. Chem. 98, 213 (1986).
- 15) T. Ogawa and A. Seta, Carbohydr. Res. 110, C1 (1982); c. f. J. P. G. Hermans, E. de Vroom, C. J. J. Elie, G. A. van der Marel, and J. H. van Boom, Recl. Trav. Chim. Pays-Bas 105, 510 (1986); P. Westerduin, G. H. Veeneman, and J. H. van Boom, Recl. Trav. Chim. Pays-Bas 106, 601 (1987).
- 16) C. E. Dreef, G. A. van der Marcel, and J. H. van Boom, Recl. Trav. Chim. Pays-Bas 106, 512 (1987).
- 17) R. L. Letsinger, E. P. Groody, N. Lander, and T. Tanaka, Tetrahedron 40, 137 (1984), and references therein.
- 18) R. G. K. Schneiderwind-Stöcklein and I. Ugi, Z. Naturforsch. 39 b, 968 (1984), and references therein.
- 19) L. Wozniak, J. Kowalski, and J. Chojnowski, Tetrahedron Lett. 26, 4965 (1985); Y. Hayakawa,
 M. Uchiyama, and R. Noyori, Tetrahedron Lett. 27, 4191 (1986), and references therein.
- 20) For leading references, see N. T. Thuong and U. Asseline, Biochimie 67, 673 (1985); W. Bannwarth and A. Trzeciak, Helv. Chim. Acta 70, 175 (1987); see also H. A. Kellner, R. G. K. Schneiderwind, H. Eckert, and I. K. Ugi, Angew. Chem. 93, 581 (1981), Angew. Chem. Int. Ed. Engl. 20, 577 (1981), and ref.¹⁷.
- 21) Method of R. T. Lee and Y. C. Lee, Carbohydr. Res. 37, 193 (1974).
- 22) Y. Nakahara and T. Ogawa, Carbohydr. Res. 173, 306 (1988).
- 23) Reviews on the synthesis of complex oligosaccharides: a) H. Paulsen, Angew. Chem. 94, 184 (1982), Angew. Chem. Int. Ed. Engl. 21, 155 (1982); b) H. Paulsen, Chem. Soc. Rev. 13, 15 (1984); c) R. R. Schmidt, Angew. Chem. 98, 213 (1986), Angew. Chem. Int. Ed. Engl. 25, 212 (1986).
- 24) Prepared using the method of N. Pravdic, Th. D. Inch, and H. G. Fletcher, Jr., J. Org. Chem.
 32, 1815 (1967); c. f. R. U. Lemieux and H. Driguez, J. Am. Chem. Soc. 97, 4063 (1975);
 V. K. Srivastava, Carbohydr. Res. 103, 286 (1982).
- See, for example: S. David and A. Veyrieres, Carbohydr. Res. 40, 23 (1975); J. Alais and A. Veyrieres, J. Chem. Soc. Perkin Trans. I 1981, 377.
- 26) J. W. Gillard and M. Israel, Tetrahedron Lett. 22, 513 (1981).
- 27) See, for example: S. B. Tjan, D. J. Poll, and T. Doornbos, Carbohydr. Res. 73, 67 (1979).
- 28) For related results, see A. Temeriusz, J. Radomski, J. Stepinski, and B. Piekarska, Carbohydr. Res. 142, 146 (1985).
- 29) H. Kessler, J. W. Bats, Ch. Griesinger, S. Koll, M. Will, and K. Wagner, J. Am. Chem. Soc. 110, 1033 (1988), and references therein.
- 30) N. Minami, S. S. Ko, and Y. Kishi, J. Am. Chem. Soc. 104, 1109 (1982).
- 31) A. J. Speziale and L. R. Smith, J. Org. Chem. 27, 3742 (1962).
- 32) c. f. V. W. Goodlett, Anal. Chem. 37, 431 (1965), and ref.³¹
- 33) Z. Samek and M. Budesinsky, Coll. Czech. Chem. Commun. 44, 558 (1979).
- 34) H. Hohgardt, Dissertation, Ruhr-Universität Bochum (1987).

- 35) c. f. A. Millar, K. H. Kim, D. K. Minster, T. Ohgi, and S. M. Hecht, J. Org. Chem. 51, 189 (1986); P. Kocovosky, Tetrahedron Lett. 27, 5521 (1986).
- 36) Review: W. Steglich and G. Höfle, Angew. Chem. 81, 1001 (1969); Angew. Chem. Int. Ed. Engl. 8, 981 (1969).
- 37) K. Tajima, Chem. Lett. 1985, 49; see also Tjan et. al. 27 and references therein.
- 38) For leading references, see M. Kloosterman, J. H. van Boom, P. Chatelard, P. Boullanger, and G. Descotes, Tetrahedron Lett. 26, 5045 (1985).
- 39) T. Ogawa, S. Nakabayashi, and T. Kitajima, Carbohydr. Res. 114, 225 (1983).
- 40) J. Imai and P. F. Torrence, J. Org. Chem. 46, 4015 (1981), and references therein.
- 41) E. J. Corey, K. Narasaka, and M. Shibasaki, J. Am. Chem. Soc. 98, 6417 (1976).
- 42) M. R. Bendall, D. M. Doddrell, and D. T. Pegg, J. Am. Chem. Soc. 103, 4603 (1981); D. M. Dodrell, D. T. Pegg, and M. R. Bendall, J. Magn. Reson. 48, 323 (1982).
- 43) A. Bax, R. Freeman, and G. Morris, J. Magn. Reson. 42, 164 (1981); A. Bax and R. Freeman, ibid. 44, 542 (1981).
- 44) A. A. Mandsley, L. Müller, and R. R. Ernst, J. Magn. Reson. 28, 463 (1977); G. Bodenhausen and R. Freeman, ibid. 28, 471 (1977); A. Bax and G. A. Morris, ibid. 42, 501 (1981).

45)

Aco To

- 46) Calculated for 35Cl.
- 47) Addition of triethylamine to the solvent mixture was necessary, otherwise (for example with hexanes-CHCl₂-ethanol 7:1:1) extensive decomposition to 12b occurred.
- 48) Only the signals of CH $_2\text{--}1$ and C-1, respectively, are recorded. A full account of all resonances is given in ref. 34
- 49) For J values, see Tables 1 and 3.
- 50) B. Matsuhiro, A. B. Zanlungo, and G. G. S. Dutton, Carbohydr. Res. 97, 11 (1981); E. Lee, J. O'Callghan, and J. P. O'Reilly, ibid. 105, 266 (1982); P. E. Pfeffer, K. M. Valentine, and F. W. Parrish, J. Am. Soc. 101, 1265 (1979); J. C. Christofides and D. B. Davies, ibid. 105, 5099 (1983); J. Reuben, ibid. 106, 6180 (1984); P. Welzel, F.-J. Witteler, L. Hermsdorf, and W. Riemer, Tetrahedron 37, 113 (1981); R. G. S. Ritchie, N. Cyr, B. Korsch, H. J. Koch, and A. S. Perlin, Can. J. Chem. 53, 1424 (1975).